
8-bit
RISC
Microcontroller

Application
Note

Rev. 2506A–AVR–02/02
AVR325: High-speed Interface to Host EPP
Parallel Port

Features
• Fast Bi-directional Point-to-Point Data Transfer with Intel® PC Host
• Code supports all AVR® Devices with 12 I/O Pins or more
• Interrupt Driven
• No Additional Hardware Required
• Transfer 60 Kilobytes/second at 4 MHz Operation
• Less than 100 Words of Code Space, No Dedicated RAM Space
• Includes Host Program In C Demonstrating use of EPP

Introduction
This application note describes a method for high-speed bi-directional data transfer
between an AVR microcontroller and an off-the-shelf IBM® PC-compatible desktop
computer. The interface provides an 8-bit parallel data path, yielding data transfer
rates up to 60 kilobytes/second with an AVR processor operating at 4 MHz. This is an
order of magnitude faster than a standard RS-232 connection while not requiring com-
plex external interface hardware (like USB and SCSI).

This application note provides the code for both the host and AVR needed to interface
an AVR to a host parallel port. It also contains construction details for the required
connecting cable and information on host setup.

Background
Since the introduction of the original IBM Personal Computer in 1981 Intel x86 desk-
top computers have become widespread, fairly well standardized and documented.
They offer fast, inexpensive high-capacity data storage, sophisticated user interfaces,
and sophisticated modeling and software development tools. However, most methods
for connecting external devices to these systems are either relatively slow or require
complex software and specialized external hardware.

The Intel x86 PC’s parallel I/O port is a compromise between achiving high speed
connection and low cost. This port was originally designed as a limited-use one-way
interface for driving printers. However, current host chipsets for the Parallel Port sup-
port multiple modes of operation to reflect this port’s expanded role as a disk and tape
interface.
1

One of these enhanced modes of operation, known as EPP – Enhanced Parallel Port –
can provide 8-bit bi-directional data transfer at speeds exceeding 1 megabyte/second.
Current AVR’s do not operate at speeds which allow them to take full advantage of EPP
transfer speed, but even a 4 MHz, AVR can achieve a 60 kilobyte/second transfer rate
using this protocol. This is fast enough to allow an AVR to perform high-speed periph-
eral functions, or to allow the host PC to be used as an AVR user interface and storage
unit for high-speed data logging.

EPP Protocol
Summary

The IBM PC-compatible architecture implements the printer port as a range of
addresses, accessed as 8-bit “registers” by the i86 processor's IN and OUT instructions.
The original printer port – SPP – was implemented as three registers: data, status, and
control; EPP mode expands this to five, and in some cases, eight.

Since a specific parallel port may exist at one of several addresses, the registers are
usually referred to by offsets from a common “base” I/O address, for example “base+1”
for the Status register. The SPP definition provides for three base addresses, but EPP
only supports two of these: 0x378 and 0x278.

The EPP protocol supports reads and writes of two different types referred to as
Address and Data over a single 8-bit data bus. Reads and writes of each type are distin-
guished by a single control signal – nWrite – and Address and Data transfers by two
control signals – nDataStrobe and nAddressStrobe. The code provided with this applica-
tion note implements Data-type transfers only, but the addition of Address-type transfers
should be straightforward.

In the PC host, control bits may be set in the EPP Control Register – base+2 – and sta-
tus bits are returned in the EPP Status Register – base+1. The Control Register is not
used for manipulating control lines during a transaction, however – these control lines
are driven by the underlying EPP hardware.

The PC host reads or writes Address information by reading or writing the Address Reg-
ister – base+3 – and Data by reading or writing the Data Register – base+4.

The EPP is fundamentally a master/slave protocol, in that the host is always the initiator
of writes and reads over the bus. However, the interrupt signal – nInterrupt – or one of
the “spare” signal lines may be used by the peripheral to request service from the host.
The supplied code uses nInterrupt – nINTR – for this purpose.

Each Operation
Proceeds in Four Steps

1. The host asserts the read/write line – nWrite – and the 8 data lines and then
asserts the Data Strobe – nDataStrobe.

2. The peripheral captures (Write) or asserts (Read) the 8 data lines, then asserts
the wait line – nWait.

3. The host captures the 8 data lines and then de-asserts the Data Strobe –
nDataStrobe.

4. The peripheral de-asserts the wait line – nWait.

Once step 4 is complete, the next operation may proceed from step 1 for EPP 1.9; for
EPP 1.7, the next operation may begin after the completion of step 3.

A 10 µs time-out is applied on the operation from the beginning of step 1 to the comple-
tion of step 2.

On top of this ISO layer-1 protocol, any of a number of possible layer-2 protocols may
be implemented.

For more information on EPP, consult the references listed at the end of this application
note.
2 AVR325
2506A–AVR–02/02

AVR325
Implementation The hostepp.c code was written for Borland’s DOS®-based TurboC v2.01compiler; a
copy of the TurboC compiler may be downloaded from the URL provided in the Refer-
ences section. AVREPP.ASM was coded using Atmel’s AVRASM assembler.

AVREPP supports Data reads and writes. It consumes 12 I/O lines (8 data + 4 control,
including 1 external interrupt – INT0), and 7 registers (6 high, 1 low). RAM usage is lim-
ited to use of the call stack.

The package consists of an Interrupt Service Routine – ISR – and a simple library con-
taining an initialization routine (ppinit) and two byte-transfer functions (ppgetc/ppputc).
These are coded to be stand-alone, suitable for wholesale insertion into another appli-
cation. (Register definitions and port assignments should be checked for compatibility
with the containing application.)

AVREPP.ASM contains a main loop which simply echoes data sent from the host back
to the host, adding line feeds when a carriage return is seen.

Buffering A one-element queue is provided for each direction (read/write). When the host per-
forms an EPP write, the data is stored in the queue until the AVR application retrieves it
with ppgetc. The application makes data available to the host by calling ppputc. This
function stores the byte in the queue and then asserts the interrupt line – nINTR – notify-
ing the host that data is available. When the host performs a read in response to this
signal the queued data byte is provided.

If the host issues an unsolicited Read (e.g., nINTR has not been asserted) there is no
data in the read buffer and the request is ignored. This is seen at the host as a Read
Time-out.

If the host issues a Write when the write queue is full, an overrun has occurred. EPP
doesn’t really provide a write flow-control mechanism which would allow the host to
avoid overruns – this needs to be dealt with in the ISO layer-2 protocol in the application
software. The code supplied with AVREPP simply accepts the new byte, overwriting the
previously queued byte and records the event; ppgetc then returns a “!” character at the
point in the data stream where the lost byte(s) would have appeared.

Interrupts The AVREPP ISR is triggered by the EPP Data Strobe signal – nDATASTR – which is
connected to the AVR INT0 external interrupt pin. A single EPP transaction (read or
write) is processed in two phases, which may result in either one or two AVR interrupts,
depending on the implementation of the host EPP hardware.

The first phase is triggered by the assertion of nDATASTR (LOW).This triggers a falling-
edge interrupt for INT0. In response to this condition, the ISR first reverses the sense of
INT0 to rising-edge, then performs the step-2 operations fetching/asserting the data and
asserting nWAIT.

The second phase is triggered by the de-assertion of nDATASTR, which triggers a ris-
ing-edge interrupt for INT0. In response to this condition, the ISR reverses the sense of
INT0 back to falling-edge for the next transaction, then performs the step-4 operations
de-asserting nWAIT.

This two-phase operation is required since the EPP protocol allows the host to take up
to a full second to de-assert nDATASTR. To allow for this possibility the AVREPP ISR
returns from the interrupt and is re-entered later when nDATASTR is finally de-asserted.

The AVREPP ISR has a heuristic in the form of a test at the end of the first phase to see
if the host has already completed step 3; if so, the ISR jumps directly to phase 2 without
returning from the ISR, and the transaction completes with only one AVR interrupt.
3
2506A–AVR–02/02

This allows the ISR to function correctly also when nDATASTR is de-asserted very
quickly after the peripheral assert nWAIT.

Host Setup In order to use the EPP protocol, the I/O chip set must be configured properly using the
host’s BIOS Setup software at host boot time. The method for configuring the host’s
Parallel Port depends on the BIOS and chip set used, but it will typically be found in a
BIOS Setup section labelled “Peripheral” or “Peripheral Setup”. For some systems this
may be a sub-section under an “Advanced” heading.The following options, from a sys-
tem equipped with an SMCFDC37C666IR I/O chipset and an AMI BIOS are typical:

Setup

\Peripheral

\On Board Parallel Port 0378 (port address)

Parallel Port Mode EPP

Parallel Port IRQ 7

Note that the definition of PPORT in hostepp.c must match the port address specified
for the Parallel Port.

Cable Pinout/STK200
Connections

The parallel port connection on an IBM-compatible PC is normally brought out through a
female DB25 connector. When the port is configured to operate in EPP mode, the DB25
pins are used as shown in Table 1:

When using a ribbon cable, keep in mind that most ribbon cable DB25 plugs connect the
DB25 pins to the cable in the order shown in Figure 1.

Table 1. Pin Mapping

DB25 AVREPP Pin Use AVREPP Label EPP Signal

1 PD4 nWRITE nWrite

2-9 PC0-7 Data0-7 respectively (Data0 is low)

10 PD5 nINT nInterrupt

11 PD6 nWAIT nWait

12-13 -- (spare)

14 PD2 nDATASTR nDataStrobe

15 -- (spare)

16 -- not used nReset

17 -- not used nAddressStrobe

18-25 Gnd Gnd
4 AVR325
2506A–AVR–02/02

AVR325
Figure 1. Parallel Port to Ribbon Cable Connection

EPP 1.7 vs. 1.9 The original EPP implementation EPP v1.7 handled the nWait signal slightly differently
from the current (v1.9) implementation. The supplied code has been written for and
tested with EPP v1.9.

For a detailed description of both implementations, see the sections “EPP 1.9 OPERA-
TION” and “EPP 1.7 OPERATION” in the SMC FDC37C665/666 datasheet PDF file.

DB25

Ribbon Cable

1 14 2 15 3 16....23 11 24 12 25 13

1 2 3 4 5 620 21 22 23 24 25
5
2506A–AVR–02/02

References Parallel Port Complete, by Jan Axelson

[ISBN 096508191-5] Lakeview Research
http://www.lvr.com/

This book provides a complete description of the Intel x86 PC Parallel Port and cur-
rently supported modes of operation. It includes timing diagrams for each mode,
circuit diagrams for external peripherals, and sample host code in Visual Basic.

Standard Microsystems Corporation

http://www.smsc.com/
SMC FDC37C665/666 and 93X datasheets, application notes.

National Semiconductor

http://www.national.com/
PC97338 datasheets

VIA Technologies

http://www.viatech.com/
VT82C686A datasheets

EPP Parallel Port

http://web.tiscalinet.it/nick/pinconpar_epp.htm
EPP pinouts and protocol description, with timing charts

TurboC

http://community.borland.com/
Downloadable copy of Borland TurboC Compiler v2.01 for MS-DOS are avalable in
the museum section (registration required).
6 AVR325
2506A–AVR–02/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2506A–AVR–02/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

IBM® are the registered trademarks of IBM Corporation, Intel ® are the registered trademarks of Intel
Corporation.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Background
	EPP Protocol Summary
	Each Operation Proceeds in Four Steps

	Implementation
	Buffering
	Interrupts

	Host Setup
	Cable Pinout/STK200 Connections
	EPP 1.7 vs. 1.9

	References

